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Abstract—This paper is about transfer function approaches for
brain-electrode interface modelling in the context of StereoElec-
troEncephaloGraphy, and their possible use in tissue classifica-
tion (between grey and white matter). Monopolar and bipolar
configurations are first reviewed, giving rise to possible non-
parametric and parametric identification methods, as well as
related possible classification results (for identical tissues and
distinct tissues at measurement points, respectively). A method
combining both approaches is then proposed, so as to end up
with a classification at each measurement point in any case.
The proposed methodology is implemented with clinical data
collected from a set of epileptic patients, confirming its interest
by providing more than 70% of accuracy in the obtained results.

Index Terms—SEEG, dynamical modelling, system identifica-
tion, classification, clinical data.

I. INTRODUCTION

Epilepsy is characterized by interruption of normal brain
functioning [10], and in front of focal drug-resistant cases,
resective surgery of the so-called epileptogenic zone (EZ) may
become necessary [3]. This requires appropriate identification
of the EZ, which can be done by non-invasive methods, or
by invasive ones for more difficult cases. StereoElectroEn-
cephaloGraphy (SEEG), where electrodes are inserted into the
patient’s brain, enters in the latter situation (as illustrated by
Figure 1).

In that case, distinguishing between grey and white matters
for the tissue where each electrode contact is located becomes
an important preliminary task: firstly because white matter
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any contact without previous MRI classification. The presented
results have been obtained on clinical data from 19 patients
under pre-surgical protocol.

This paper is organised as follows: Section II introduces the
data used in this study, and section III summarises background
results on non-parametric and parametric approaches towards
tissue classification. On this basis, section IV provides the
combined methodology here proposed, and section V con-
cludes the paper.

II. DATA OVERVIEW

The data used in this study were recorded during SEEG
investigation from 19 drug-resistant epileptic patients at
Grenoble-Alpes University Hospital. Patients were adults and
gave their consent for the data to be re-used by the research
protocol F-TRACT (INSERM IRB 14-140). Signals have
been recorded using a Micromed (Micromed, Treviso, Italy)
SEEG/video system in referential montage, with a reference
contact chosen in the white matter, also known as the monopo-
lar montage. The sampling frequency (fs) was either chosen as
1024 Hz (for 7 patients) or as 512 Hz (for 12 patients), and the
signals were filtered by an acquisition band-pass filter between
0.1 and 200 Hz. The data of all patients were resampled at
256 Hz using the resample function in Matlab (see chapter 14
of [9]). The electrodes were manufactured by Dixi Medical
(Besançon, France), of which 6 to 15 were implanted per
patient, each containing 5 to 18 contacts of 0.8 mm diameter
and of 1.5 mm long, separated by 3.5 mm (center to center)
from the next one. The tissue in which each contact is inserted
in was classified using the co-registration of the MRI with
the CT-scan of the patients following the labelling procedure
described in [11] using the FreeSurfer software. In this study,
only baseline signals are used, which correspond to 40 s
periods of time while the patient was resting, as described
in [10]. The data during stimulation is not used here.

III. IDENTIFICATION METHODS FOR BRAIN TISSUE
CLASSIFICATION

As mentioned two different approaches for brain tissue
identification using system identification were recently pro-
posed. One based on non-parametric frequency identification
(see [7]), and the other one based on parametric identification
of a non-integer order model (see [8]). The idea of using
system identification for tissue classification is based on the
fact that grey and white matters have different conductivities
(as observed in [12], and [13]). Therefore, these differences
should have an impact on the gain at small frequencies of a
model. The aim of this article is to combine both approaches
to propose an automatic tissue classification method based on
SEEG signals. To that end, this section is dedicated to the
presentation of both identification-based tissue classification
approaches.

A. Non-parametric Frequency Identification Based Classifica-
tion for Homogeneous Tissues

The idea of this classification method is to identify the
non-parametric frequency response between two consecutive

contacts. The outermost contact of the pair is considered as
the input (U1), and the innermost contact is considered as
the output (U2) (see Fig. 1b). Here the voltages are kept in
referential, or monopolar montage.

(a) SEEG

Input

Output

(b) Contact order

Fig. 1: Representation of (a) SEEG, and (b) contact order used
for non-parametric frequency identification.

The non-parametric frequency response is calculated via
Spectral Analysis (SPA) (see chapter 6 of [9]):

ĜSPA(eiω) =
Φ̂U2U1

(ω)

Φ̂U1(ω)
(1)

with Φ̂U2U1
(ω), the Fourier transform of the windowed cross-

covariance between input and output signals, and Φ̂U1
(ω), the

Fourier transform of the windowed covariance of signal U1.
It can also be written in the polar form:

ĜSPA(eiω) = M̂SPA(ω)eiφ̂SPA(ω) (2)

with M̂SPA(ω), and φ̂SPA(ω) the magnitude and phase as
functions of the frequency ω.

After an analysis of the obtained frequency responses done
in [7], four features were proposed based on the magnitude
M̂SPA(ω). The first two being the mean squares (MS) of two
different frequency bands: 0Hz ≤ b1 < 30Hz, and 30Hz ≤
b2 ≤ 128Hz:

MS bi =
1

Ni

∑

fj∈[fi
1,f

i
2]

M̂2
SPA(fj) (3)

with i = {1, 2}, and Ni the number of samples within the
frequency band. The last two proposed features are based on
the relative mean square (MSr):

MSr bi =
MS bi
MS b

(4)

in which MS b is the MS of the total frequency band (0Hz ≤
b ≤ fs/2Hz), with fs the sampling frequency.

As contacts are considered by pairs, their classification can
no longer be binary (Grey or White matter), there are four
possible combinations (Grey/Grey, White/White, Grey/White,
and White/Grey). Because of the fact that classification con-
sidering four different groups can be a complex task, and for
the fact that different combinations of heterogeneous tissues
made it hard for the separation in heterogeneous groups, only
homogeneous pairs (G/G and W/W) as classified by the MRI
were considered in [8] for tissue classification an equivalent of
1058 pairs after outlier extraction. An LDA classifier was used

Fig. 1: SEEG

not being epileptogenic [11], related contacts should be disre-
garded; secondly because in functional connectivity analysis,
stimulations in grey and white matters should not be the same
[31], as they produce different effects [25].

Classically, distinguishing between grey and white matter
is based on co-registration of structural Magnetic Resonance
Imaging (MRI) with Computed Tomography (CT) scans [9],
which can be limited by poor image quality, e.g. geometrical
distortion and poor contrast between grey and white matter.
This motivates for searching alternatives, directly using SEEG
signals. Very few studies have investigated such an approach: a
Bayesian classifier has been recently considered in [11], based
on features extracted from signals in a bipolar montage, while
we have started to explore system identification methods in
[18] and [21].

In [18], features were proposed on the basis of non-
parametric identification of frequency response between pairs
of consecutive contacts, providing a promising accuracy for
pairs in homogeneous matter, as compared to MRI classifica-
tion. In [21], a parametric model of the brain-electrode inter-
face was proposed based on triplets of consecutive contacts,
giving again classification results with a good accuracy, but
for triplets in heterogeneous matter.

Those results were obtained by considering previously se-
lected homogeneous pairs and heterogeneous triplets of con-
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tacts respectively. This means that none of the methods were
used for tissue classification at a given contact without any
prior knowledge about tissue homogeneity or heterogeneity
w.r.t. its neighbours.

In this context, the main goal of the present paper is to show
how transfer function approaches and related system identifi-
cation can be used for automatic brain tissue classification at
every single contact, directly using SEEG signals.

This combines our former communications [19], [20] en-
hancing both the modelling approach and the classification
one.

About modelling, we refer to that of the brain-electrode
interface which is involved. This topic has been considered in
various studies, more particularly in the context of Deep Brain
Stimulation (DBS), to quantify impedance changes. In [26],
[15], [14], or [30] for instance, a model has been identified
via electrode impedance spectroscopy (EIS) or impedance
tester, using signals recorded in animals chronically implanted
with electrodes. In such experiments, the impedance between
electrode contacts is identified by measuring both contact
voltages and the current in between. In the context of SEEG,
one can only find [4] where an impedance model was iden-
tified, but again using a known current - and with a simpler
structure. However, in usual SEEG conditions, the current is
not measured, and the only available information reduces to
voltage measurements at each contact.

An additional difficulty in such available studies is that most
models include derivation operators of non-integer order, in
so-called Constant Phase Elements (CPE). Non-integer order
(or fractional order) derivatives, which extend standard deriva-
tion [28], have been introduced in the modelling of various
physical systems for their improved memory properties [27].
They can also be found in biological systems (as in [22], [13],
[32] for instance), and were in particular successfully used in
our previous study of a phantom EEG measurement device
[1]. As in [21], we will here consider a non-integer order
model. Regarding classification, the main idea in this paper is
to combine approaches formerly developed for homogeneous
and heterogeneous cases in [18] and [21] respectively, so as
to obtain single contact classification.

The remainder of the paper is organized as follows: section
II first provides an overview on the modelling methodology,
and section III continues with corresponding identification
approaches, together with related classification results. On this
basis, section IV then proposes a single contact classification
scheme, and section V finally concludes the paper.

II. TRANSFER FUNCTION MODELLING FOR BRAIN TISSUE
CLASSIFICATION

A. Transfer function approach

Transfer function approach means defining input and output
variables. In the context of SEEG, the known information
is related to contact voltages, which can thus be used for
such definitions. The dynamics in between corresponds to
the brain-eletrode interface behaviour, which, as mentioned

before, has been largely studied in the literature. In particular
it can be characterized by three elements, as depicted by Figure
2: a so-called peri-electrode layer (corresponding to tissue
encapsulation of the electrode formed by the brain reaction to
foreign bodies), a direct interface between each contact and
its surrounding physiological tissue, and the brain tissue itself.
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Fig. 2: Physical representation of the brain-electrode interface
(with electrode contacts in black).

Each of these elements can be described by its impedance,
as emphasized by Figure 3: Zi for interface impedance, Zp for
peri-electrode one, and Zb for brain one, for which previous
studies provide electrical models.

 

 

 

Zp 

Zb 

U2 

Zi 

Zp 

Brain 

Peri‐electrode 

Interface 

Electrode U1 

Zi 

Fig. 3: Impedance representation between contacts.

Notice that in this representation, interface and peri-
electrode impedances are identical for the two contacts. In
fact, no difference in interface or peri-electrode impedances
according to the nature of the surrounding brain tissue (grey
or white matter) has been reported in the literature. Hence we
can make the simplifying assumption that they are uniform all
along the electrode. On the other hand, it has been observed
that grey and white matters have different conductivities [4],
[24]. Therefore, these differences should have an impact on
the transfer function, which can in turn be used for tissue
classification.

The overall impedance between two consecutive contacts
(say U1, U2) is summarized by Figure 4, and two approaches
can then be considered, either non-parametric, or parametric
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(following the terminology of [17] for instance).
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Fig. 4: Electrical impedance between two contacts.

B. Non-parametric approach

In a first approach, the transfer between measured contact
voltages can be considered in a standard monopolar configu-
ration, where each voltage is taken w.r.t. a common reference
contact (Uref ) located away in white matter: for instance
V1ref = U1 − Uref , V2ref = U2 − Uref , for two consecutive
contacts U1, U2. This amounts to a transfer function as in
Figure 5 (with V1ref as the input, V1ref as the output, and
appropriate impedances Z12, Z1ref ).
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Fig. 5: Monopolar montage: voltage measurements at two
consecutive contacts U1 and U2 are taken w.r.t. a distant
contact Uref .

Following our former study [18], such a configuration can
give rise to direct frequency response identification between
measurements for pairs of consecutive SEEG contacts. Exam-
ples of identified models in such a way are given in Figure 6,
where mean magnitudes of Bode plots obtained for 19 patients
at rest, and a total of 486 pairs of contacts [18], are displayed.
It can be noticed that the magnitude profile looks like that of
a so-called lag-lead filter.

Ccl

Ren

Rcl

UEP UPM

(a) Peri-electrode layer with ca-
pacitor

ZCPEcl

Rcl

Ren

UPMUEP

(b) Peri-electrode layer with CPE

Fig. 3: Representations of the peri-electrode interface. In (a)
the encapsulation resistance Ren is in series with the parallel
of Rcl and Ccl representing the cell membrane. In (b) the
capacitance Ccl is substituted by a CPE ZCPEcl

.

in saline solutions, this resistance represents the electrolyte
resistance. In the cases where electrodes are implanted in the
brain, the medium resistance represents the resistance of the
brain tissue in between two measurement points. With this
resistance, the complete brain-electrode interface circuit can
be found in Fig. 4.

  

ZCPEdl

Rct

ZCPEcl

Ren Rmed

Rcl

U1 U2UEP UPM

Fig. 4: Electronic circuit model of the brain-electrode inter-
face, based on physical properties.

III. VOLTAGE DIVIDER MODEL FOR SEEG SIGNALS

The brain-electrode interface model presented in the previ-
ous section has been generally identified using EIS for DBS, in
which case both the electrical potential and current are known
between the two measuring contacts. To our knowledge, only
one other study [6] identified an integer-order brain-electrode
interface model using SEEG contacts. However, the authors
have used signals that are not typically recorded during SEEG
investigation, and also had access to both current and voltage
between two contacts. Thus, the brain-electrode interface has
not yet been identified using only typical SEEG voltage
recordings. In order to do so, in this section, adjustments of
the circuit are proposed in order to transform it into a voltage
divider, keeping in mind the expected frequency behaviour of
the model as shown in [9].

A. Dynamic Behaviour of SEEG Voltage Divider

In a previous study [9], the non-parametric transfer function
between a pair of consecutive SEEG contacts was identified
considering the voltage of the first contact as input, and the
voltage of the second contact as output. Both voltages were
referenced considering as reference a distant contact in the
white matter, and were recorded while the patient was resting
(known as the baseline). The obtained mean magnitudes of
the Bode plots representing the dynamics between the output
and the input voltages expected for each frequency ω of

contact pairs in grey and white matter can be found in Fig. 5
considering 19 patients and a total of 486 pairs. As it can be
seen, the expected dynamic of the transfer function between
the voltages of two measuring contacts in SEEG, has a
magnitude looking like that of a so-called lag-lead filter. Thus,
the new proposed voltage divider model should also have
the same dynamics when considering a pair of consecutive
contacts.

10
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-10
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0

5

M
a
g
n
it
u
d
e
 (

d
B

)

Mean Bodes for baseline

grey

white

Fig. 5: Mean frequency response of pairs of contacts in grey
matter (in black), and white matter (in cyan). This figure was
taken from [9].

B. Model with monopolar derivation

The intuition of the model is to use three consecutive
contacts and study transfer functions obtained with bipolar
derivations using one contact as a reference. A transfer func-
tion corresponding to a voltage divider can be obtained. A
model is proposed based on our previous work ( [16]) with
the addition of a tissue encapsulation described previously.

In [16], platinum contacts were inserted in an electrolyte
medium. One of the contacts was stimulated with a white noise
and the other ones were used for voltage measurements at
different distances from the input signal. All voltages were
measured in reference to a reference contact also inserted in
the electrolyte.

1) Proposed circuit: Getting inspiration from the phantom
EEG measurement chain circuit in [16], A model of a pair of
consecutive SEEG contacts recorded with monopolar deriva-
tions is given in Fig. 6. The reference electrode Uref is put in
distance in the white matter. The impedance Z represents the
electrode-electrolyte interface together with the peri-electrode
layer. Z1 is related to the first contact, and Z2 is related to
the second contact. V1 = U1 − Uref is the voltage measured
by the first monopolar derivation, and V2 = U2 − Uref is the
voltage measured by the second monopolar derivation.

One simplification that can be done to the model is to as-
sume that the electrode-electrolyte interface and peri-electrode
layer are the same for both contacts, Z1 = Z2. In literature
no difference on the Z impedance was reported depending
on the type of brain tissue surrounding the contact (grey or
white). Another simplification adopted here is that the non-
integer orders of both electrode-electrolyte interface and peri-
electrode layer are assumed to be the same α. This is based on
the values identified by [2] that are very similar for both cases
considering the recordings are taken one week after electrode

Fig. 6: Mean frequency response of pairs of contacts in grey
matter (in black), and white matter (in cyan) (from [18]).

C. Parametric approach

In order to enhance the transfer function approach, a para-
metric model can also be considered [21]: the idea is then to
rely on available electrical descriptions of Zi, Zp, Zb. Here
it can be noticed that the impedance w.r.t. Uref (Z2ref in
Figure 5) is not easily deduced, in particular because it may
vary according to the position of the considered contact. For
this reason, we now adopt a bipolar configuration, where
each voltage in a pair of consecutive contacts (U1, U2) is re-
referenced w.r.t. the next adjacent one (denoted by U0):

V1 := U1 − U0 = V1ref − V0ref

V2 := U2 − U0 = V2ref − V0ref
(1)

with V0ref := U0 − Uref . This approach is summarized by
Figure 7 (where Z gathers Zi and Zp, and index i = 1, 2 for
Zb refers to possible variations in brain impedance).
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U
1
 U

2
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 Z
b
2  

Z 

U
0
 

U
1
 

U
2
 

U
0
 

V
1
 V

2
 

Fig. 7: Bipolar montage: voltage measurements at two consec-
utive contacts U1 and U2 are taken w.r.t. subsequent contact
U0.

Representations of impedances Zi, Zp, Zb are recalled next:

1) Interface: One of the first contributions towards an
electrical representation for it can be found in [29]: the
proposed model is made of a double layer capacitance Cdl,
representing the charge layers in the metal surface and the peri-
electrode one (as shown in Figure 2), in parallel with a charge
transfer resistance Rct, corresponding to charge leaks due elec-
trochemical reactions. It was then shown that to better account
for adsorption, surface roughness, and molecular forces in
the capacitive effect [6], capacitance Cdl can be replaced by
a capacitance with non-integer order model (Constant Phase
Element), of the following form:

ZCPEdl
(s) =

1

Qdlsα
(2)

for a constant Qdl, and s the Laplace variable.
Here 0 < α < 1, represents the non-integer order, and the

inverse Laplace transform of sα corresponds to a fractional-
order time derivative (see e.g. [16]).

The corresponding interface impedance model Zi is illus-
trated by Figure 8.
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Fig. 8: Interface impedance model.

2) Peri-electrode: The peri-electrode characterizes the en-
capsulation layer that appears around the implanted electrode
by reaction of nervous system [12]. In SEEG measurements,
electrodes are implanted long enough so that such a phe-
nomenon occurs [15]. An electrical circuit to represent it
can be found for instance in [26], [15], and [30]: it takes
the form of a resistor, representing the encapsulation tissue
by extracellular matrix proteins (Ren), in series with an RC
parallel circuit, capturing the physical properties of the glial
cell membrane that surrounds the electrode. The model can
again be improved by replacing the standard capacitor with a
CPE (ZCPEcl

, as in equation (2), with a constant Qcl) [15],
still in parallel with a resistor (Rcl). The resulting model for
the peri-electrode impedance is given in Figure 9.

 

Rct

Q
dl

Z
i
 

Rcl 

Q
cl

Z
p
 

Ren

Fig. 9: Peri-Electrode impedance model.

3) Brain: The third element involved is the brain itself,
which can be represented by a simple resistor Rmed charac-
terizing the resistance of the propagation medium between the
measuring contacts. Its illustration Zb reduces to that of Figure
10.

 

Rct

Q
dl

Z
i
 

Rmed 

Z
b
 

Fig. 10: Brain impedance model.

Notice that in addition to considering that Zi and Zb are the
same ones at each contact, we will assume that non-integer
orders in both CPE’s involved in this model are identical,
consistently with results of [15] for instance.

Finally, the transfer function between V1 and V2 is given by
the following:

Proposition 1: Considering electrical circuit of Figure 7,
with elements of Figures 8, 9, 10, the transfer function
L(V2)(s)/L(V1)(s) reads

G12(s) =
L(V2)(s)

L(V1)(s)
=

B1s
2α +B2s

α +B3

A1s2α +A2sα + 1
(3)

where L(.) stands for the Laplace transform, and coefficients
Bi’s, Ai’s are given by:

B1 =
QdlQclRctRcl(Rmed2 + 2Ren)

4Rct + 4Rcl + 4Ren +Rmed1 +Rmed2
(4)

B2 =
(QdlRct +QclRcl)(2Ren +Rmed2)

4Rct + 4Rcl + 4Ren +Rmed1 +Rmed2

+
2RctRcl(Qcl +Qdl)

4Rct + 4Rcl + 4Ren +Rmed1 +Rmed2
(5)

B3 =
2Rct + 2Rcl + 2Ren +Rmed2

4Rct + 4Rcl + 4Ren +Rmed1 +Rmed2
(6)

A1 =
QdlQclRctRcl(4Ren +Rmed1 +Rmed2)

4Rct + 4Rcl + 4Ren +Rmed1 +Rmed2
(7)

A2 =
4RctRcl(Qdl +Qcl)

4Rct + 4Rcl + 4Ren +Rmed1 +Rmed2

+
(4Ren +Rmed1 +Rmed2)(RctQdl +RclQcl)

4Rct + 4Rcl + 4Ren +Rmed1 +Rmed2
(8)

This can be established by simple impedance composition
and voltage divider law (see appendix for more details).

It can be noticed from equation (3) that in low frequencies
the gain becomes G12(s → 0) → B3, while in high frequen-
cies we have G12(s → ∞) → B1/A1. Thus, this model can
represent either a lag-lead or a lead-lag behaviour, depending
on the values of B1, B3, and A1, with a plateau in low
frequencies and another one in high frequencies. This is illus-
trated by Figure 6 hereafter, where the magnitude of frequency
response is displayed for five versions of transfer function
(3), computed for different values of electrical components.
In those models, the non-integer order has been set to 0.8, as
a typical value in such biomedical systems [23], [2], and each
electrical parameter has been chosen randomly in the following
sets, consistently with results already presented in the literature
[29], [15], [21]: 1kΩ < Rr < 1MΩ, 100pF < Cs < 100nF ,
10nF < Qdl < 15µF , 10nF < Qcl < 15µF , 1kΩ < Rct <
200kΩ, 1kΩ < Rcl < 50kΩ, 1kΩ < Ren < 10kΩ, and
1kΩ < Rmed < 30kΩ.

Notice that a parametric model for the monopolar montage
can also be considered, but it appears to be less suitable to
represent the expected lag-lead behavior [19], and is thus
omitted here.
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impedance (∼ 1 MΩ). However, in [16], the identified values
for Rr had orders of magnitude similar to the values of the
medium resistance. Considering that the reference contact was
inserted in the electrolyte medium, instead of Rr representing
the input impedance of the amplifier, it most likely represents
the medium resistance between the output contact and the
reference contact. In reality, the impedance between the output
contact and the reference should be considered as the parallel
of the input impedance of the amplifier and the impedance
between the output and reference contacts. However, from the
fact that the parallel between two impedances tends to be
closer to the smaller value of both, the equivalent circuit is
closer to the impedance between the output and the reference
contacts. For the SEEG case, the reference is chosen as a
contact in white matter. Thus, it is a similar situation as for
the phantom EEG case. The impedance between the output
and the reference contacts should be similar to the impedance
between the input and output contacts, as all are inserted
in the brain. With that, the resulting circuit model can be
found in Fig. 8. As in the phantom EEG inspired circuit, the
impedance Z represents the electrode-electrolyte interface and
the peri-electrode layer, which is considered to be the same
for every considered contact. The only difference between the
impedance between the input and output contacts, and the
impedance between the output and reference contacts is the
value of the medium resistance Rmed.
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Fig. 8: New voltage divider model for SEEG signals.

The corresponding transfer function of the proposed circuit
is given by:

GNC(s) =
VLT2(s)

VLT1(s)
=

B1s
2α +B2s

α +B3

A1s2α +A2sα + 1
(10)

with VLT1(s) and VLT2(s) the Laplace transforms of V1 and
V2, and coefficients given by:

B1 =
QdlQclRctRcl(Rmed2 + 2Ren)

4Rct + 4Rcl + 4Ren +Rmed1 +Rmed2
(11)

B2 =
(QdlRct +QclRcl)(2Ren +Rmed2)

4Rct + 4Rcl + 4Ren +Rmed1 +Rmed2

+
2RctRcl(Qcl +Qdl)

4Rct + 4Rcl + 4Ren +Rmed1 +Rmed2
(12)

B3 =
2Rct + 2Rcl + 2Ren +Rmed2

4Rct + 4Rcl + 4Ren +Rmed1 +Rmed2
(13)

A1 =
QdlQclRctRcl(4Ren +Rmed1 +Rmed2)

4Rct + 4Rcl + 4Ren +Rmed1 +Rmed2
(14)

A2 =
4RctRcl(Qdl +Qcl)

4Rct + 4Rcl + 4Ren +Rmed1 +Rmed2

+
(4Ren +Rmed1 +Rmed2)(RctQdl +RclQcl)

4Rct + 4Rcl + 4Ren +Rmed1 +Rmed2
(15)

Looking at equation (10), when s → 0, the gain in small
frequencies is GNC(s → 0) → B3, and when s → ∞,
GNC(s → ∞) → B1/A1. Thus, the model can either have
a lag-lead or a lead-lag dynamic, depending on the values of
B1, B3, and A1, with one plateau in small frequencies and
another in high frequencies.

2) Model Simulation: For the case of the bipolar derivations
circuit, the same range of values were considered for the
electronic components. Once again, five different models were
simulated choosing the values of the components at random,
the equivalent Bode plots can be found in Fig. 9.
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Fig. 9: Examples of Bode plots of five different simulated
models using the new proposed circuit.

As it can be seen, considering the possible value ranges of
the electronic components, as for the case observed in Fig. 5,
the gain stabilises at a second plateau in higher frequencies,
and does not tend to go to −∞ dB as the previous case.
The models were also stimulated in time considering a SEEG
voltage input (measured by the first contact of a real pair),
and the output of the simulated model was compared to the
expected output (measured by the second contact of a real
pair). The comparison showed that the order of magnitude
and shape of the output of the model is comparable to the
expected measured SEEG output.

IV. IDENTIFICATION OF THE PROPOSED MODEL

The next step would be to identify the transfer function
coefficients of equations (2) and (10) using only the input
and output SEEG signals. A review of non-integer order
identification methods can be found in [18]. Here, the cho-
sen identification algorithm is described in a previous study
[17], where the proposed bipolar derivations model presented
here was identified using data from 19 epileptic patients.
In general, considering an ARX structure, the transfer func-
tion is written in the regression form using the Tustin and
Grünwald–Letnikov approximations, in which the output in a
discrete instant k can be written as a function of the input, past
outputs and the regression coefficients. Once the regression

Fig. 11: Examples of magnitude profiles in bode plots of five
different simulated models using the proposed circuit with five
different sets of electrical parameters.

III. IDENTIFICATION TOOLS AND BACKGROUND
MULTI-CONTACT RESULTS

A. Data and identification methodology

Let us consider here similar data as in our former works
[18], [21]: they come from actual SEEG recordings on
19 drug-resistant adult epileptic patients at the Hospital of
Grenoble-Alpes University, who consented to the re-use of
their data by research protocol F-TRACT (INSERM IRB 14-
140). Signals have been collected via a Micromed (Treviso,
Italy) SEEG/video system in monopolar montage, with sam-
pling frequency fs = 512Hz for 12 patients, and 1024Hz for
the other 9. A band-pass filter with frequency range between
0.1 and 200Hz was used, and all data resampled at 256Hz
(see chapter 14 of [17]). Electrodes come from Dixi Medical
(Besançon, France), and were implanted by 6 to 15 per patient.
Each of them contains 5 to 18 contacts, with a length equal
to 1.5mm, a diameter of 0.8mm, and contact inter-distance
equal to 3.5mm (from center to center).

The tissue in which each contact is inserted in was classified
using MRI co-registration with CT-scan, following the proce-
dure of [7] and using FreeSurfer software. This classification
is used as the gold reference in this whole study.

Notice that for all our classifications, we use Linear Dis-
criminant Analysis (LDA).

Notice also that as in [18], [21], we only consider baseline
signals here, over 40 s in time, and recorded at rest [5].

On the basis of such data, and following the discussion
of section II, two different transfer function models can be
considered, giving rise to two different identification ap-
proaches: either frequency response identification, based on
pairs of contacts, or impedance-based (non-integer order)
parametric model, based on triplets of contacts. It appears
that the first approach allows to distinguish between grey and
white matters when the tissue looks homogeneous between
the two contacts of a considered pair (either Grey/Grey or
White/White). On the other hand, the second approach is
appropriate for tissue classification in case of heterogeneity

(Grey/White or White/Grey). The corresponding identification
tools and results are reviewed hereafter.

B. Pairs of contacts with homogeneous tissues

In this approach, monopolar montage of Figure 5 is consid-
ered, with outermost contact taken as the input (V1ref ), and
innermost contact as the output (V2ref ) for each contact pair,
as in Figure 12.

any contact without previous MRI classification. The presented
results have been obtained on clinical data from 19 patients
under pre-surgical protocol.

This paper is organised as follows: Section II introduces the
data used in this study, and section III summarises background
results on non-parametric and parametric approaches towards
tissue classification. On this basis, section IV provides the
combined methodology here proposed, and section V con-
cludes the paper.

II. DATA OVERVIEW

The data used in this study were recorded during SEEG
investigation from 19 drug-resistant epileptic patients at
Grenoble-Alpes University Hospital. Patients were adults and
gave their consent for the data to be re-used by the research
protocol F-TRACT (INSERM IRB 14-140). Signals have
been recorded using a Micromed (Micromed, Treviso, Italy)
SEEG/video system in referential montage, with a reference
contact chosen in the white matter, also known as the monopo-
lar montage. The sampling frequency (fs) was either chosen as
1024 Hz (for 7 patients) or as 512 Hz (for 12 patients), and the
signals were filtered by an acquisition band-pass filter between
0.1 and 200 Hz. The data of all patients were resampled at
256 Hz using the resample function in Matlab (see chapter 14
of [9]). The electrodes were manufactured by Dixi Medical
(Besançon, France), of which 6 to 15 were implanted per
patient, each containing 5 to 18 contacts of 0.8 mm diameter
and of 1.5 mm long, separated by 3.5 mm (center to center)
from the next one. The tissue in which each contact is inserted
in was classified using the co-registration of the MRI with
the CT-scan of the patients following the labelling procedure
described in [11] using the FreeSurfer software. In this study,
only baseline signals are used, which correspond to 40 s
periods of time while the patient was resting, as described
in [10]. The data during stimulation is not used here.

III. IDENTIFICATION METHODS FOR BRAIN TISSUE
CLASSIFICATION

As mentioned two different approaches for brain tissue
identification using system identification were recently pro-
posed. One based on non-parametric frequency identification
(see [7]), and the other one based on parametric identification
of a non-integer order model (see [8]). The idea of using
system identification for tissue classification is based on the
fact that grey and white matters have different conductivities
(as observed in [12], and [13]). Therefore, these differences
should have an impact on the gain at small frequencies of a
model. The aim of this article is to combine both approaches
to propose an automatic tissue classification method based on
SEEG signals. To that end, this section is dedicated to the
presentation of both identification-based tissue classification
approaches.

A. Non-parametric Frequency Identification Based Classifica-
tion for Homogeneous Tissues

The idea of this classification method is to identify the
non-parametric frequency response between two consecutive

contacts. The outermost contact of the pair is considered as
the input (U1), and the innermost contact is considered as
the output (U2) (see Fig. 1b). Here the voltages are kept in
referential, or monopolar montage.

(a) SEEG

Input

Output

(b) Contact order

Fig. 1: Representation of (a) SEEG, and (b) contact order used
for non-parametric frequency identification.

The non-parametric frequency response is calculated via
Spectral Analysis (SPA) (see chapter 6 of [9]):

ĜSPA(eiω) =
Φ̂U2U1

(ω)

Φ̂U1(ω)
(1)

with Φ̂U2U1
(ω), the Fourier transform of the windowed cross-

covariance between input and output signals, and Φ̂U1
(ω), the

Fourier transform of the windowed covariance of signal U1.
It can also be written in the polar form:

ĜSPA(eiω) = M̂SPA(ω)eiφ̂SPA(ω) (2)

with M̂SPA(ω), and φ̂SPA(ω) the magnitude and phase as
functions of the frequency ω.

After an analysis of the obtained frequency responses done
in [7], four features were proposed based on the magnitude
M̂SPA(ω). The first two being the mean squares (MS) of two
different frequency bands: 0Hz ≤ b1 < 30Hz, and 30Hz ≤
b2 ≤ 128Hz:

MS bi =
1

Ni

∑

fj∈[fi
1,f

i
2]

M̂2
SPA(fj) (3)

with i = {1, 2}, and Ni the number of samples within the
frequency band. The last two proposed features are based on
the relative mean square (MSr):

MSr bi =
MS bi
MS b

(4)

in which MS b is the MS of the total frequency band (0Hz ≤
b ≤ fs/2Hz), with fs the sampling frequency.

As contacts are considered by pairs, their classification can
no longer be binary (Grey or White matter), there are four
possible combinations (Grey/Grey, White/White, Grey/White,
and White/Grey). Because of the fact that classification con-
sidering four different groups can be a complex task, and for
the fact that different combinations of heterogeneous tissues
made it hard for the separation in heterogeneous groups, only
homogeneous pairs (G/G and W/W) as classified by the MRI
were considered in [8] for tissue classification an equivalent of
1058 pairs after outlier extraction. An LDA classifier was used

Fig. 12: Input and output contact ordering.

The frequency response is estimated via Spectral Analysis
(SPA) (see chapter 6 of [17]) as follows:

ĜSPA(e
iω) =

Φ̂V2refV1ref
(ω)

Φ̂V1ref
(ω)

(9)

where Φ̂V2refV1ref
(ω) is the Fourier transform of the win-

dowed cross-covariance between input and output signals, and
Φ̂V1ref

(ω), the Fourier transform of the windowed covariance
of input signal V1ref , both being functions of pulsation ω (or
of frequency f , via ω = 2πf ).

In polar form, this expression gives magnitude M̂SPA(ω),
and phase ϕ̂SPA(ω) of the frequency response, as:

ĜSPA(e
iω) = M̂SPA(ω)e

iϕ̂SPA(ω) (10)

From the frequency response analysis of [18], four dis-
criminant features can be considered, defined from magnitude
M̂SPA(ω), as mean squares (MS) and relative mean squares
(RMS), over two frequency ranges: FR1 = [0Hz, 30Hz]
and FR2 = [30Hz, 128Hz] = [30Hz, fs/2Hz] :

MSFRi =
1

Ni

∑

fj∈FRi

M̂2
SPA(2πfj) (11)

RMSFRi =
MSFRi

MS b
(12)

with i = {1, 2}, Ni the number of samples within frequency
range FRi, and MS the mean square over the full frequency
range FR1 ∪ FR2.

Focusing on homogeneous pairs of contacts (either both in
grey matter, or both in white matter) according to MRI classi-
fication in our data set, and after elimination of outliers, 1058
pairs are left. Considering fifty scenarii of different training
data (90% of the data) and test data (10%), an accuracy of
72± 3% could finally be obtained in the classification results.
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C. Triplets of contacts with heterogeneous tissues

In this approach, the idea is to exploit the physical inter-
pretation of the parametric model given in proposition 1, to
obtain other features for classification [21].

Taking indeed advantage of the resistance variation w.r.t.
the brain matter nature (grey or white), the primary idea is to
use the estimation of Rmed parameter as a feature, for each
available triplet of contact.

Noting that model (3) is characterized by a vector of 5
parameters θ = [B1, B2, B3, A1, A2]

T , while they depend on 7
electrical parameters, it is not possible to recover all electrical
ones from estimates of θ.

However, it appears from equations (7) and (4) that for a
given triplet of contacts, Rmed1 and Rmed2 can be compared
as follows:

Proposition 2: From relations (7) and (4) we have:

B1

A1
> 0.5 ⇔ Rmed2 > Rmed1 (13)

B1

A1
= 0.5 ⇔ Rmed2 = Rmed1 (14)

The proof is obvious (just noting that we have
B1

A1
=

2Ren +Rmed2

4Ren +Rmed1 +Rmed2
).

From this result, when the brain matter is different between
all contacts in a triplet (Rmed2 ̸= Rmed1), then

B1

A1
becomes

a possible feature to distinguish between them.
Estimates for B1 and A1 can be obtained by parametric

identification of model (3). Re-written in time-domain, it
reads:

A1

(
d

dt

)2α

V2(t) +A2

(
d

dt

)α

V2(t) + V2(t) =

B1

(
d

dt

)2α

V1(t) +B2

(
d

dt

)α

V1(t) +B3V1(t) (15)

Following former discussions of [8], [33], [2] on non-integer
order identification via regression, the non-integer order time
derivative of a signal V can be approximated from its discrete
values V (k) at times kh (with sampling time h) for N
samples, by Grünwald–Letnikov method, as follows [28]:

(
d

dt

)α

V (k) ≃ 1

hα

N∑

i=0

(−1)i
(
α

i

)
V (k − i) (16)

with
(
α
i

)
the generalised Newton binomial.

Equation (15) is then turned into a linear regression [21]:

V2(k, θd) = φT (k)θd (17)

where V2(k, θd) represents our model output.
In this regression, the parameter vector is:

θd = θ
h2α

h2α + θ4 + θ5hα
(18)

where θi is the ith component of θ,
and the regressor is:

φ(k) = [F2α(V1)(k), Fα(V1)(k), V1(k), F2α(V2)(k − 1),
Fα(V2)(k − 1)]T

(19)
where Fγ(.) refers to a filter operator, related to some non-
integer order γ, and defined from delay operator q by:

Fγ =
1

hγ

N∑

i=0

(−1)i
(
γ

i

)
q−i (20)

The identification finally becomes a minimisation problem:

minθd

1

N

∑

k

(V2(k)− V2(k, θd))
2 (21)

where V2(k) is the actual measurement of V2 at time kh.
In this formulation, additional constraints can be added, so

as to respect positivity of parameters typically.
From estimate θ̂d for θd, estimates for parameters of θ can

obviously be obtained, and in turn, feature B1/A1 can be
computed.

With the considered data, two different heterogeneous
groups can be defined: ”Grey/White”, for a triplet of contacts
with more grey matter between the first two contacts than
between the last two ones, and ”White/Grey”, for the converse.
In that case, 136 triplets are obtained with our data, and using
scenarii with 75 % of the data for training, and the remaining
25 % for validation, classification results were obtained with
an accuracy of 73± 6% [21].

IV. SINGLE CONTACT CLASSIFICATION RESULTS

Since in the former section, non-parametric and parametric
identification methods were only considered for homogeneous
and heterogeneous groups respectively (pre-selected according
to MRI classification), and for contact pairs and triplets
respectively, the purpose here is to discuss how they can be
enhanced so as to end up with an automatic classification for
single contact, and with no prior knowledge.

In our data, 356 triplets of contacts are now used, corre-
sponding to those for which parametric models were validated
in [21]. For each triplet, the non-parametric method is applied
for the first two contacts, forming 356 pairs.

A. Classification results with separate methods

Let us first discuss how previous identification approaches
perform for the classification of a single contact, without
any prior homogeneity or heterogeneity information. This
means using pairs of contacts with non-parametric method,
and triplets with parametric one as before, but now with the
goal of identifying tissue for the first contact (of a triplet, or a
corresponding pair). Classifying labels then reduce to ”Grey”,
and ”White”, as in our gold standard MRI classification. Two
LDA classifiers are trained, either considering non-parametric
features (11)-(12) and only homogeneous pairs according
to the MRI (145 ”Grey/Grey”, and 124 ”White/White”), or
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considering parametric feature (B1/A1, as emphasized in
proposition 2) and only heterogeneous triplets according to
the MRI (73 ”Grey/White”, and 63 ”White/Grey”).

Notice that an heterogeneous triplet can be related to a
homogeneous pair, if the first two contacts of the triplet are in
the same tissue, and the third one in a different tissue. For our
pairs of contacts, 76% are in homogeneous tissue, and 24% in
heterogeneous one. For the triplet, 56% are in homogeneous
tissue, 38% in heterogeneous one, and 6% are in mixed tissue,
where the intermediate contact is in a tissue different from
the one of the other two contacts (tissue orders of the form
Grey/White/Grey or White/Grey/White).

Classifier training (for first contacts) was done with 75 %
of the data, and validated with the remaining 25 %. Trained
classifiers were applied to pairs and triplets of contacts in
homogeneous and heterogeneous groups first separately, and
then to all 356 first contacts involved in the study. Accuracies
of classification results obtained for each of those cases are
summarized in Table I.

TABLE I: Accuracies of Identification-based LDA Classifiers
for Single Contacts (for a set of 356 contacts)

LDA Classifier Accuracy
Only

homogeneous
Only

heterogeneous
All

contacts
Non-parametric 72% (76% of pairs) 55% (24% of pairs) 68%

Parametric 60% (56% of triplets) 73% (38% of triplets) 65%

As expected, the non-parametric classifier performs better
for homogeneous groups, and the parametric classifier is
better for heterogeneous ones. One can also notice that the
parametric classifier gives a higher accuracy for homogeneous
group separation than the non-parametric classifier for hetero-
geneous group separation. However, when looking at overall
accuracy considering all groups, the non-parametric classifier
outperforms the parametric one. This can be explained by the
fact that 76% of contact pairs are in homogeneous tissues.

B. Combination of Both Identification Methods

From the results of previous subsection, each identification-
based classification method classifies well the label of the first
contact for different types of tissue combinations. Here, the
idea is to combine information provided by both classifiers,
using the posterior probabilities of each first contact to be in
the ”Grey” group, according to each classifier, non-parametric
(np) or parametric (p).

The classifier will be mentioned by an index c ∈ {np, p},
and features for a contact x in ”Grey” group assumed to satisfy
a Gaussian distribution density of the form:

Pc(x|G) =
1

((2π)d|ΣG|) 1
2

exp

(
−1

2
(x− µG)Σ

−1
G (x− µG)

T

)

(22)
where d is the number of features (d = 4 if c = np, and d = 1
if c = p), while ΣG and µG refer to covariance and mean of
the features of group ”Grey” respectively.

Denoting by PG the prior probability of the ”Grey”
class (resp. PW for ”White” class) and defining a normal-
ization coefficient by the following law of total probabil-

ity P (x) :=
∑

k∈{G,W} Pc(x|k)Pk, the normalised posterior
probability is obtained by Bayes rule as:

P̂c(G|x) = Pc(x|G)PG

P (x)
(23)

The values of P̂c(G|x) indicate how likely the contact x is to
be part of the ”Grey” group, given its feature values. Each set
of 356 pairs and 356 triplets is assigned a value of normalised
posterior probability P̂np(G|x) and P̂p(G|x) corresponding to
the non-parametric and parametric classifiers respectively.

This information can then be used to first identify contacts
’badly’ classified, and then classify the remaining ones:

1) Bad contacts elimination: Contacts with a high proba-
bility of being badly classified can indeed be eliminated, by
comparing labels provided by each classifier.

Over the 356 combinations of contacts, the elements ob-
taining same labels when using both non-parametric and
parametric classifiers can be considered as correctly classified
(72%). However, this does not mean that all of the remaining
28% should be considered as ”badly” classified. In fact, for
the cases where the obtained probability is around 0.5 (say
0.4 < P̂c(G|x) < 0.6) with either non-parametric or paramet-
ric classifier, the chances for the contact to be in grey or white
matter are quite similar according to this classifier. Hence the
idea in such cases is to rather refer to the other classifier to
make a decision, and there is no error of classification. Thus,
the only classifications that can be considered as ”bad” when
comparing labels obtained by the two classifiers are those for
which when one of the normalised posterior probabilities is
high the other one is low. With that, only 14% of contacts can
be considered as ”badly” classified, leaving 305 contacts to be
analysed in the following step.

A summarizing picture of this bad classification identifi-
cation based on normalised posterior probabilities is given
in Figure 13, together with the likely triplet compositions
expected for each combination of probabilities.

where x represents one contact, d the number of features
(d = 4 for the non-parametric, and d = 1 for the parametric),
and ΣG and µGk the covariance and the mean of the features
of group ”Grey” respectively. Considering PG as the prior
probability of the ”Grey” class, and a normalization constant
P (x) =

∑
k∈[G,W ] Pc(x|k)Pk, the normalised posterior prob-

ability is given by:

P̂c(G|x) =
Pc(x|G)PG

P (x)
(20)

The values of P̂c(G|x) indicate how likely the contact x is
of being a part of the ”Grey” group given the feature values
of x. Each 356 combination of pairs and trios, are assigned
two values of normalised posterior probabilities P̂np(G|x), and
P̂p(G|x) corresponding to the non-parametric and parametric
classifiers respectively.

1) Bad contacts elimination: As a first step, one can use
this information to eliminate contacts with ”Bad” classifi-
cation. This can be done by comparing the label attributed
by each classifier. From the 356 combinations of contacts,
the elements that had the same attributed label using both
non-parametric and parametric classifier can be considered
as correct (72%). However, it does not mean that all of the
remaining 28% should be considered to be ”badly” classi-
fied. In fact, for the cases where either non-parametric or
parametric classifiers have probabilities in the middle range
(0.4 < P̂c(G|x) < 0.6), it means that the chances for the
contact being in grey or white matter are close for the specific
classifier, so one should use the other classifier to make a
decision. In this cases, there is no error of classification. Thus,
the only classifications that can be considered as ”Bad” when
comparing labels attributed by the two classifiers are the ones
for which when one of the normalised posterior probabilities
is high the other is low. With that, only 14% of contacts were
considered as ”badly” classified, leaving 305 contacts to be
analysed in the following section. The graphical representation
of the ”Bad” contact elimination according to the normalised
posterior probabilities can be found in Fig. 3, together with
the likely trio compositions expected for each combination of
probabilities.
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Fig. 3: Representation of the ”Bad” contact elimination process
according to the normalised posterior probabilities.

2) Combined classification: Once the contacts of ”Bad”
classification were eliminated by comparison of the normalised
posterior probabilities of the non-parametric and parametric
classifiers, what is left to do is to combine the information of
each classifier. In order to do so, a unified normalised posterior
probability is calculated by taking the mean of the normalised
posterior probabilities of each classifier (equation (20)):

P̂ (G|x) =
P̂np(G|x) + P̂p(G|x)

2
(21)

If P̂ (G|x) > 0.5 the contact is considered to be in ”Grey”
matter, and if P̂ (G|x) < 0.5 the contact is considered to
be in ”White” matter. With the combined classification, and
considering only the 305 contacts previously selected, the
obtained accuracy in respect to the MRI classification is 72%.
In order to compare the combined classification with each
classifier separately, the same 305 selected pairs and trios
of contacts are used. In Fig. 4 the percentage of correctly
classified first contacts considering the combined classification
is compared to the percentage of correctly classified first
contacts of the separate classifiers in regard to the MRI
classification of the pairs and trios for the non-parametric
and parametric cases respectively. In Table II, the overall
accuracies for each classifier considering all 305 contacts
are presented. In general, it can be seen that the combined
classifier has very similar performance to the non-parametric
classifier. With the elimination of ”Bad” contacts, the perfor-
mance of individual classifiers was enhanced when compared
to Table I. The former is slightly less effective for classification
of ”Grey/Grey” cases, but more effective for classification of
”Grey/White” cases. However, the combined classifier has a
better performance than the parametric one for most of the
cases other than ”Grey/White/Grey”, and ”White/Grey/White”
tissue compositions. Indeed, the improvement is from 66%
alone to 72% with the combined classifier.

TABLE II: Accuracies for Single Contact Classification for
Each Classifier for 305 Contacts

Accuracy
Combined 72%

Non-parametric 72%
Parametric 66%

V. CONCLUSION

In this paper an automatic single contact tissue classification
method based on system identification was proposed based
on the non-parametric and parametric classifiers proposed in
[7] and [8] respectively. Up until this point, both methods
were solely applied to specific selected groups, and were used
for the classification of pairs and trios of contacts. Here the
proposition is to combine these previously proposed methods
to classify a single contact (the first one of the trio or pair).
The biggest advantage when combining the two methods is
that the combined information allows the elimination of ’Bad”
classifications. Around 14% of contacts were eliminated. The
”Bad” classification might be due to noisy signals recorded by
the contacts that affect identified models. The combination of

Fig. 13: Illustration of the ”Bad” contact identification process
based on normalised posterior probabilities.
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2) Combined classification: After elimination of badly
classified contacts, combination of information delivered by
each classifier can be considered for remaining contacts. To
that end, an average normalised posterior probability is defined
from the normalised posterior probabilities of each classifier
(equation (23)):

P̂ (G|x) = P̂np(G|x) + P̂p(G|x)
2

(24)

On this basis, we adopt the following classification:

• if P̂ (G|x) > 0.5, the contact is considered to be in
”Grey” matter,

• if P̂ (G|x) < 0.5 the contact is considered to be in
”White” matter.

With this approach, applied to the 305 contacts previously
selected, the obtained accuracy w.r.t. MRI classification is
72%.

In order to compare this combined classification with per-
formances by each separate classifier, pairs and triplets in the
same 305 selected contacts are used. The results are shown
in Figure14, presenting the percentage of correctly classified
first contacts by combined classification in comparison to the
percentage of correctly classified first contacts by each of
the classifiers separately, in pairs and triplets for the non-
parametric and parametric cases respectively.
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Fig. 4: Comparison of correctly classified first contacts in
respect to MRI groups of (a) non-parametric and combined
classifiers, and (b) parametric and combined classifiers.

normalised posterior probabilities of the non-parametric and
parametric classifiers resulted in a significant improvement of
the parametric classifier. However, the combined classifier did
not have the same impact for the non-parametric classifier,
with only a slight improvement for the pairs composed by grey
and white matter. This indicates that out of the two previously
proposed classifiers, the non-parametric one is the most robust
for single tissue classification. This can be explained by the
fact that the parametric classification method uses trios of
contacts for feature extraction. The more contacts are used,
the more the conductivity of the medium is impacted by other
surrounding tissues, and the harder binary classification is.
Nevertheless, the parametric classifier can still be of help
for the non-parametric classification for eliminating uncertain
contacts, and giving an idea of the surrounding tissue com-
position. As was discussed in [16], the signal measured by a
single contact is largely impacted by the surrounding tissues,
thus a binary classification might not be the most appropriate.
As it is, the tissue classification method for a single contact
based on system identification serves as a complement for MRI
tissue classification. Furthermore, once the non-parametric
and parametric classifiers are trained, they can be helpful
for doctors to decide which contacts are of interest for the
stimulation phase of the SEEG investigation.
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Fig. 4: Comparison of correctly classified first contacts in
respect to MRI groups of (a) non-parametric and combined
classifiers, and (b) parametric and combined classifiers.

normalised posterior probabilities of the non-parametric and
parametric classifiers resulted in a significant improvement of
the parametric classifier. However, the combined classifier did
not have the same impact for the non-parametric classifier,
with only a slight improvement for the pairs composed by grey
and white matter. This indicates that out of the two previously
proposed classifiers, the non-parametric one is the most robust
for single tissue classification. This can be explained by the
fact that the parametric classification method uses trios of
contacts for feature extraction. The more contacts are used,
the more the conductivity of the medium is impacted by other
surrounding tissues, and the harder binary classification is.
Nevertheless, the parametric classifier can still be of help
for the non-parametric classification for eliminating uncertain
contacts, and giving an idea of the surrounding tissue com-
position. As was discussed in [16], the signal measured by a
single contact is largely impacted by the surrounding tissues,
thus a binary classification might not be the most appropriate.
As it is, the tissue classification method for a single contact
based on system identification serves as a complement for MRI
tissue classification. Furthermore, once the non-parametric
and parametric classifiers are trained, they can be helpful
for doctors to decide which contacts are of interest for the
stimulation phase of the SEEG investigation.
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Fig. 14: Comparison of correctly classified first contacts with
(a) non-parametric and combined classifiers, and (b) paramet-
ric and combined classifiers (G means Grey and W White).

Table II also displays the overall accuracies for each clas-
sifier with all 305 contacts.

TABLE II: Accuracies for Single Contact Classification for
Each Classifier approach with 305 Contacts

Accuracy
Combined 72%

Non-parametric 72%
Parametric 66%

From those results, it can be noticed that the combined
classifier has a performance very similar to that of non-
parametric classifier. With the elimination of ”Bad” contacts,
the performance of individual classifiers was enhanced when
compared to Table I.

In the upper part of Figure 14, it can be seen that even
if performances are pretty similar, the combined classification
does a bit better than the non-parametric one for classification
of ”Grey/White” cases.

On the other hand, in the lower part, it appears that this
combined classifier has a better performance than the paramet-
ric one for all cases, except configurations ”Grey/White/Grey”
and ”White/Grey/White”. The accuracy can even reach almost
95% for the ”G/G/W” case, and Table II shows an average
improvement from 66% for the parametric classifier by itself,
to 72% with the combined one.

V. CONCLUSIONS

In this paper, two transfer function modelling approaches for
dynamic representation of brain-electrode interface in SEEG
have been reviewed, with the purpose of using them for
brain tissue classification (grey or white matter) around each
electrode contact. A first one is based on pairs of contacts and
frequency-based non-parametric identification, showing good
classification results for contacts in homogeneous matter. On
the other hand, the second approach is based on triplets of con-
tacts and impedance-based parametric identification, providing
good classification results for contacts in heterogeneous matter.
On this basis, the extension of those separate methods to a
combined framework allowing for tissue classification of sin-
gle contacts and with no homogeneous or heterogeneous prior
information has been presented, in the end giving classification
results with accuracies larger than 70%. This is promising, and
future studies will be dedicated to accuracy improvements and
data-based tests enlargement.

APPENDIX

Proof of proposition 1:
Considering the structure of circuit in Figure 7, with Zb =

Rmed as in Figure 10, let us set Zk := Z + Rmedk + Z for
k = 1, 2. Then it easily follows (voltage divider):

L(V2)(s) =
Z2

Z1 + Z2
L(V1)(s) (25)
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On the other hand, with notations of Figures 8 and 9, the
definition of Z yields:

Z = Zi + Zp (26)

where
Zi =

ZCPEdlRct

ZCPEdl +Rct

=
Rct

1 +RctQdlsα

(27)

and
Zp = Ren +

ZCPEclRcl

ZCPEcl +Rcl

= Ren +
Rcl

1 +RclQclsα

(28)

Hence Z = N/D with:

N = Ren(1 +RclQcls
α)(1 +RctQdls

α)
+Rcl(1 +RctQdls

α) +Rct(1 +RclQcls
α)

D = (1 +RclQcls
α)(1 +RctQdls

α)
(29)

Then:
Z2

Z1 + Z2
=

2N +Rmed2D

4N + (Rmed1 +Rmed2)D
(30)

By expanding denominator expression, we get its constant
term as 4(Rct+Rcl+Ren)+Rmed1+Rmed2, and normalizing
by it all coefficients in expanded numerator and denominator,
coefficients Bi’s and Ai’s of proposition 1 are obtained.
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